
Fast Parameterization of Human Ventricular Ionic Models Using CardioFit

Maxfield R Comstock1, Flavio H Fenton2, Elizabeth M Cherry1

1 School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA,
USA

2 School of Physics, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Ionic models of cardiac action potentials (APs) may not
reproduce all relevant datasets using their default settings,
and tuning parameter values to improve fits is often diffi-
cult. To facilitate this task, we present CardioFit, a tool
to fit cardiac AP model parameters to time-series data us-
ing particle swarm optimization (PSO). CardioFit quickly
finds conductance parameter values for detailed human
ventricular models, including those of ten Tusscher et al.
(2006) and O’Hara et al., that match experimental data,
within the capabilities of the models. CardioFit is im-
plemented as a web-based tool using JavaScript and the
WebGL graphics API, allowing PSO to take advantage of
any available graphics-processing unit hardware to run
in parallel. As the PSO algorithm requires the simul-
taneous evaluation of many candidate parameterizations
when searching for the best fit, this method is well-suited
to large-scale parallelism. Due to its fast parallel imple-
mentation, CardioFit obtains conductance parameters of
detailed ionic models to match a given dataset in a few
minutes on consumer-grade hardware, even though tens of
thousands of model runs typically are required.

1. Introduction

Models of human heart tissue are important for un-
derstanding and predicting outcomes in a clinical setting.
However, the electrical properties of human heart tissue
vary even in healthy tissue and may be altered further due
to cardiac disease. In order to account for this variabil-
ity and provide patient-specific predictions, cardiac mod-
els incorporate parameters which may be tuned to achieve
desired adjustments to the model behavior. However, as
these parameters are numerous and have complex, inter-
acting, and nonlinear effects, manually adjusting these pa-
rameters is a difficult process which is often impractical
even for experts in a given model.

Many automated approaches have been developed for
the task of parameter fitting; however, these approaches
are often computationally expensive and may require a

detailed understanding of the parameter fitting method in
question. Additionally, they may be laborious to imple-
ment and difficult to validate for a specific model. To fa-
cilitate fast and easy parameter fitting of cardiac models
to data, we have developed a fast, interactive tool, Car-
dioFit, which uses the particle swarm optimization (PSO)
algorithm to find parameterizations of cardiac models that
reproduce the features of user-provided data sets [1]. We
have previously demonstrated the effectiveness of Car-
dioFit for fitting phenomenological models to both human
data [2] and data from more complex models [3].

Although phenomenological models are sufficient to
study cardiac dynamics in many cases, in scenarios like
studying effects of drugs or calcium dynamics, more phys-
iologically detailed models are necessary. In addition,
even detailed models may not provide good fits to ex-
perimental data using their original parameter values and
may require tuning [4]. To that end, we have incorporated
into CardioFit two popular human cell models: the ten
Tusscher-Noble-Noble-Panfilov 2006 (TNNP) model [5]
and the O’Hara-Virág-Varró-Rudy (OVVR) model [6]. In
this manuscript, we present results from fitting these mod-
els to human data, both synthetic and experimental, using
CardioFit.

2. Methods

Models: Two mechanistic human ionic models were
integrated into CardioFit. The first model added is the
TNNP model [5], which includes 19 state variables and 12
currents with conductance or scaling parameters that can
be fit using PSO. The second model added is the OVVR
model [6], which includes 41 state variables and 14 cur-
rents. As four of these, INa, ICaL, ICaNa, and ICaK are
split into two components with separate conductance val-
ues, there are 18 total current conductance and scaling pa-
rameters that can be fit for this model. Notably, the INaK
current does not have an explicit scaling parameter in the
original formulation of the model, but the provided factor
of 30 in the original equation is replaced in CardioFit us-
ing the new scaling parameter GNaK. The default bounds
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for each parameter value use 50% and 200% of the de-
fault value provided in the original model formulation as
the minimum and maximum, respectively.

Models are integrated using the Rush-Larsen method for
gating variables, explicit Euler integration for non-gating
variables, and a calcium buffering approach described in
Appendix A of Ref. [7] for intracellular calcium concen-
trations in the TNNP model. A fixed time step size of
0.02ms is used for both models. For equations that are
only dependent on voltage, values of the equation over a
range of reasonable voltage values are pre-computed at the
start of each simulation and stored in tables, which are then
accessed during the simulation run to improve efficiency.

Particle swarm optimization: The PSO algorithm
searches the parameter space for a given optimization
problem by maintaining a pool of candidate parameter-
izations, referred to as “particles,” which are iteratively
updated based on low-error solutions from previous iter-
ations. At each iteration, the parameter values associated
with each particle are evaluated by running a simulation of
the model using those parameters and measuring the error
relative to the input data. The particle positions and ve-
locities are then updated, with the velocities influenced to
move in random degrees toward previously identified good
solutions. The formulation of the PSO algorithm used in
CardioFit is described in detail in Ref. [1]. For the time-
series data used in the results presented here, mean abso-
lute error between the data set and the model output is used
as the error metric. When fitting multiple data sets simulta-
neously, a weighted sum of the error for each data set (with
weights specified by the user) is used.

One of the main advantages of PSO is that it does not re-
quire any assumptions or transformation of the model be-
ing fit; CardioFit requires only an implementation of the
model itself so that a simulation can be run for a provided
set of parameters and the output can be compared with the
data. The main limitations of PSO are that it is not guar-
anteed to find an optimal solution and that it has a high
computational cost due to the need to run a full simula-
tion of the model for every particle at every iteration. To
improve performance, CardioFit uses a parallel implemen-
tation of the PSO algorithm in which the simulation and
corresponding error for each particle during a single iter-
ation are computed independently. As CardioFit allows
thousands of particles to be used, and more particles gen-
erally decrease error [1], CardioFit uses graphics for large-
scale parallelism, resulting in improved performance on
machines with more powerful graphics-processing units
(GPUs). All fits included here were performed using 50
iterations with 4096 particles.

CardioFit interface: In order to integrate an interac-
tive user experience with the fast parallel performance
provided by graphics hardware, CardioFit is implemented

in JavaScript using the WebGL API for interaction with
GPUs. A key benefit of this approach is that the software
can be distributed as a web page and run in a web browser
without the need for the user to manually install or compile
the program to see the full benefits of GPU parallelism. Ef-
fective use of CardioFit does not require a detailed under-
standing of the PSO algorithm or the specific model being
optimized, although expert users have the option to tune
hyperparameters of the PSO algorithm and manually ad-
just the bounds and number of the parameters to be fit.

As the PSO algorithm is random in its nature, multiple
runs of CardioFit, even with identical settings, will pro-
duce different results. The results for a run can be saved
for use of the generated parameters in other applications.

3. Results

An important test of the capabilities of CardioFit is the
model recovery case, where a model is fit to data taken
from itself in an attempt to reproduce the behavior as
closely as possible. Figure 1 shows the results of five fits
for each of three types of fittings in the self-recovery case
for the TNNP model fit to its own data paced at 1 s using
the parameters from the original paper [5]. When fitting
to voltage data only, the voltage characteristics are closely
recovered (panel (A)), but the behavior of the intracellular
calcium concentration is not well constrained (panel (B)),
indicating that fitting to calcium data is important to ad-
equately constrain the model behavior. Conversely, when
only calcium data is fit, the fitted calcium reproduces the
calcium data well (panel (D)), but the voltage values show
increased error, particularly in the initial upstroke and the
final stages of repolarization (panel (C)). By fitting both
voltage and calcium data simultaneously, good reproduc-
tion of both types of data is acheived (panels (E–F)).

In addition to model recovery, fits of one model to an-
other were performed in order to test the capabilities of
the models to reproduce the behavior of other models.
Figure 2 shows the result of fitting the OVVR model to
the TNNP model using the same data sets as in the self-
recovery case. Although exact reproduction of the data is
not possible in this case, when only voltage data is fit, the
OVVR model is capable of closely reproducing the voltage
time series (panel (A)), but the intracellular calcium con-
centration shows large differences (panel (B)). When only
the calcium data is fit, the voltage data shows increased tri-
angulation (panel (C)) although the fitted calcium behavior
is much more accurate to the data (panel (D)). As with the
model recovery case, fitting both voltage and calcium data
results in good recovery of both data sets (panels (E–F)).

The OVVR and TNNP models were also fit to data
recorded from an explanted human heart during an optical-
mapping experiment, as shown in Figure 3. The tissue
was paced at intervals of 1 s and the shape of the action
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Figure 1. Fittings of the TNNP model to data taken
from the same model using various combinations of volt-
age and intracellular calcium data. (A-B) Voltage and cal-
cium traces from fitting to voltage data only. (C-D) Voltage
and calcium traces from fitting to calcium data only. (E-F)
Voltage and calcium traces from fitting both voltage and
calcium data. Five fits are plotted in each case in various
colors with the target data plotted in black.

potential exhibited behavior bordering on Brugada syn-
drome, notably in the delayed development of the plateau.
As neither model was formulated to recover this property,
this aspect of the action potential is not reproduced by the
models, although other features of the action potential are
closely reproduced by both models, with the exception of
the final repolarization stages for the OVVR model.

4. Discussion

The CardioFit tool is able to fit parameters of detailed
human action potential models to both voltage and intra-
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Figure 2. Fittings of the OVVR model to the TNNP
model using various combinations of voltage and intracel-
lular calcium concentration data. (A-B) Voltage and cal-
cium traces from fitting to voltage data only. (C-D) Volt-
age and calcium traces from fitting to calcium data only.
(E-F) Voltage and calcium traces from fitting both voltage
and calcium data.

cellular calcium concentration data. As demonstrated in
the model self-recovery case and the model-to-model fit,
fitting exclusively to voltage or calcium concentration is
often not sufficient for constraining the other component.
Consequently, fitting to both types of data simultaneously
allows for superior reproduction of the recorded dynamics.
For the sake of brevity, several cases are not shown such as
the simultaneous fitting of multiple cycle lengths of data,
model self-recovery for the OVVR model, and fittings of
the TNNP model to OVVR data. The cases shown are in-
dicative of typical results in these cases.

We believe that CardioFit provides researchers with a
fast, easy-to-use method of fitting cardiac model parame-
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Figure 3. Fittings of the TNNP and OVVR models to opti-
cal mapping data recorded from a human heart displaying
an AP morphology bordering on Brugada syndrome.

ters to data sets to facilitate the computational study of ob-
served phenomena. Nevertheless, the work presented here
has several limitations. Although CardioFit is designed
to produce parameterizations quickly on consumer-grade
hardware, the nature of the PSO algorithm requires a large
amount of computation, particularly for complicated mod-
els such as TNNP and OVVR. Computers with insufficient
hardware, particularly those without dedicated GPUs, may
not be able to run the program or may be prohibitively
slow, although all fittings presented here completed within
a few minutes on a machine with a dedicated GPU. Addi-
tionally, fitting to more or longer data sets simultaneously
requires relatively more computation. This limitation im-
poses a challenge for avoiding the effects of transient ini-
tial conditions, which requires pacing the model for sev-
eral beats before comparison with the data. All fittings
presented in this work used 80 beats of simulation before
comparison with the data in an attempt to mitigate these
transient effects. A possible future improvement to Car-
dioFit would be find ways to reduce the requirement for
long simulations, such as beginning with initial conditions
that may be closer to the steady-state behavior of a given
parameterization. Furthermore, reproducing detailed Bru-
gada action potential features may require fitting additional
parameters, such as time constant scale factors.

As both voltage and intracellular calcium concentration
data can be recorded simultaneously from optical-mapping
experiments [8], an important next step for the improve-
ment of CardioFit is the capability to fit to recorded cal-
cium concentration data. As CardioFit is already able to
fit to calcium data taken from models, the only further ad-
dition required is the capability to normalize calcium data.
A complexity of normalization is that many models (in-
cluding TNNP and OVVR) incorporate significantly dif-
ferent expected ranges of calcium concentrations in their
formulations, meaning that choosing reasonable values to

normalize the calcium data may pose a challenge. The ad-
dition of calcium normalization to CardioFit and a corre-
sponding investigation of fits of these models to human
voltage and calcium data is currently in progress.
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